3701 Kirby Dr, Ste 994
Houston, TX 77098
713-521-1450
info@appliednano.com

Relevant Literature   (click on each recent title for full article or journal link)

 

Publications using the NanoSpectralyzer

2018
 
2017
 
2016

 

2015

 

2014

 

2013
 
2012
 
2011
  • A Mechanistic Study of the Selective Retention of SDS-suspended SWCNTs on Agarose Gels.  C. A. Silver-Batista et al, J. Phys. Chem. C (2011) 115, 9361-9369
  • Oxidized SWCNTs: Removal of Carbonaceous Functionalized Material by Washing with Solvents or Base.  E. D. Canto et al, MRS Proceedings (2011) DOI: 10.1557/opl.2011.1085
  • Sorting the Unique Chirality, Right Handed SWCNTs via the Dye Modified ssDNA.  R. Liu et al, J. Nanoscience & Nanotechnology (2011) 11, 7587-7592
  • Analyzing Absorption Backgrounds in SWCNT Spectra.  A. V. Naumov et al, ACS Nano (2011) 5, 1639-1648
  • Screeing the Cytotoxicity of SWCNTs Using Novel 3D Tissue-mimetic Models.  D. Movia et al, ACS Nano (2011) 5, 9278-9290
  • Effect of surfactant structure on carbon nanotube sidewall adsorption.  A. Di Crescenzo et al, European J. Org. Chem. (2011) DOI: 10.1002/ejoc.201100720
  • Controlled Carboxylic Acid Introduction: A Route to Highly Purified Oxidised SWCNT.  K. Flavin et al, J. Mat. Sci. (2011) DOI: 10.1039/C1JM12217G
  • Photoluminescence from Inner Walls in Double Walled CNTs: Some Do, Some Do Not. S. Yang et al, Nano Letters (2011) DOI:10.1021/nl2025745
  • Using Fluorescence Quenching of SWCNT with Metal Ions as a Probe of Surfactant:SWNT Interactions. J. Brege and A.R. Barron, Main Group Chemistry (2011) 2, 89-104
  • Growth of SWCNT with Controlled Diameters and Lengths by an Aerosol Method. Y. Tian et al, Carbon (2011) 49, 4636-4643
  • Structural Modifications of Ionic Liquid Surfactants for Improving the Water Disepersibility of Carbon Nanotubes: An Experimental and Theoretical Study.A. Di Crescenzo et al, Physical Chemistry Chemical Physics (2011) 13, 11373-11383
  • Carbon Nanotube Sidewall Functionalization with Carbonyl Compounds - Modified Birch Conditions vs the Organometallic Reduction Approach. B. Gebhardt et al, JACS (2011)133, 7985-7995
  • Mitigation of the Impact of SWCNT on a Freshwater Green Algae: Pseudokirchneriella subcapitata. S. Youn et al, NanoToxicology (2011) DOI: 10.3109/17435390.2011.562329
  • Swelling the Hydrophobic Core of the Surfactant-Suspended SWCNT: A SANS Study. C. Silvera-Batista and K.J. Ziegler, Langmuir (2011) DOI: 10.1021/la202117p

  • SWCNT Shell Decorating  Porous Silicate Materials: A General Platform for Studying the Interaction of Carbon Nanotubes with Photoactive Molecules. A. Saha et al, Chem Sci. (2011) 2, 1682-1687
  • Non-covalent Ruthenium Polypyridyl Complexes-Carbon Nanotubes Composites: an Alternative  for Functional  Dissolution of Carbon Nanotubes in Solution. D. Jain et al, Chem. Commun. (2011) 47, 2246-2248
  • Magnetic Nanoparticle-based Separation of Metallic and Semiconducting Carbon Nanotubes,  H. Kim et al, Nanotechnology (2011) 22, 45703-45708
  • Synthesis and Characterization of Boron Azadipyrromethane SWCNT Electron Donor-Acceptor Conjugates, K. Flavin et al, ACS Nano (2011) 5, 1198-1206
  • Density Gradient Ultracentrifugation on Carbon Nanotubes According to Structural Integrity as a Foundation for an Absolute Purity Evaluation. C. Backes et al, ChemPhysChem (2011) 12, 2576-2580
  • Perylene-Based Nanotweezers: Enrichment of Larger-Diameter Single-Walled Carbon Nanotubes. C. Backes et al, Chem. Asian J. (2011) 6, 438-444
  • Counterion effect on the aggregation of anionic perylene dyes and the influence on carbon nanotube dispersion efficiencies. C. Backes et al, J. Mater. Chem. (2011) 21, 3554-3557
 
2010
  • Oxygen Doping Modifies Near-Infrared Band Gaps in Fluorescent SWCNTs, S. Ghosh et al, Science (2010) 300, 1656-1659
  • A Novel Diameter-selective Functionalization of SWCNTs with Lithium Alkynylides, B. Gebhardt et al, Eur. J. Org. Chem. (2010) 8, 1494
  • Diameter-dependent Solubility of SWCNTs, J. G. Duque et al, ACS Nano (2010) 4, 3063
  • Solvatochromic shifts of SWCNT in nonpolar microenvironments, C. A. Silvera-Batista et al, Phys. Chem. Chem. Phys. (2010) 12, 6990
  • Understanding the Electrophoretic Separation of SWCNT Assisted by Thionine as a Probe, H. Li et al, J. Phys. Chem. (2010) DOI: 10.1021/jp106869r
  • Advanced Sorting of SWCNTs by Nonlinear Density-gradient Ultracentrifugation, S. Ghosh, S.M. Bachilo & R. B. Weisman, Nature Nanotechnology (2010) 5, 443
  • Effect of Vaporization Temperature on the Diameter & Chiral Angle Distributions of SWCNTs, P. Nikolaev et al, J. Nanoscience & Nanotechnology (2010) 10, 3780
  • Dispersion of HiPco® and CoMoCAT® Single-Walled Nanotubes (SWNTs) by Water Soluble Pyrene Derivatives—Depletion of Small Diameter SWNTs. C. Backes et al, Chem. Eur. J. (2010) 16, 3314-3317
  • Enhanced Adsorption Affinity of Anionic Perylene-Based Surfactants towards Smaller-Diameter SWCNTs. C. Backes et alChem. Eur. J. (2010) 16, 13185-13192
  • Nanotube Surfactant Design: The Versatility of Water-Soluble Perylene Bisimides. C. Backes et al, Adv. Mater. (2010) 22, 788-802
  •  
 
2009
  • High Population of Individualized SWCNTs through the Adsorption of Water-Soluble Perylenes,C. Backes et al, JACS (2009) 131, 2172
  • Coating Individual SWCNT with Nylon 6,10 through Emulsion Polymerization,W. C.  Chen et al, Applied Materials & Interfaces (2009) 1, 1821
  • Environmentally Friendly Functionalization of SWCNT in molten urea,C. D.  Doyle and J. M. Tour, Carbon (2009) 47, 3215
  • Solution Manipulation of SWCNT and Their Applications in Electrochemistry, D. Wang, Ph.D. Thesis, Ohio University (2009)
  • Diameter Tuning of SWCNT with Reaction Temperature Using a Co Monometallic Catalyst, N. Li, J. Phys. Chem. C (2009) 113, 10070
  • Effect of Chromium Addition to the Co-MCM-41 Catalyst in the Synthesis of SWCNT, C. Z. Loebick et al, Applied Catalysis A: General (2009) 368, 40
  • Long-Term Improvements to Photoluminescence and Dispersion Stability by Flowing SDS-SWNT Suspensions through Microfluidic Channels, C. A. Silvera-Batista et al, JACS (2009) 131, 12721
  • Do Inner Shells of Double-Walled Carbon Nanotubes Fluoresce? D.A. Tsyboulski et al, Nano Lett (2009) 9, 3282
  • In Vivo Therapeutic Silencing of Hypoxia-Inducible Factor 1 Alpha (HIF-1 ) Using Single-Walled Carbon Nanotubes Noncovalently Coated with siRNA, G. Bartholomeusz et al, Nano Research (2009) 2, 279
  • Multidomain Peptides as SWCNT Surfactants in Cell Culture, E.L. Bakota et al, Biomacromolecules (2009) 10, 2201
  • Strategy for High Concentration Nanodispersion of SWCNT with Diameter Selectivity, C. Biswas et al, J. Phys. Chem. C (2009) 113, 10044
  • Selective Enhancement of Carbon Nanotube Photoluminescence by Resonant Energy Transfer, Ahmad et al, Chem. Phys. Chem. (2009) 10, 905
  • Fluorescence Quenching of SWCNTs with Transition-Metal Ions, J. Brege et al, J. Phys. Chem. C (2009) 113, 4270
  • Investigation of Optimal Parameters for Oxide-Assisted Growth of Vertically Aligned SWCNTs, C. Pint et al, J. Phys. Chem. C (2009) 113, 4125
 
2008
  • Swelling the Micelle Core Surrounding SWCNTs with Water-immiscible Organic Solvents, R. Wang et al, JACS (2008) 130, 16330
  • Improving the Effectiveness of Interfacial Trapping in Removing SWCNT Bundles, R.K. Wang et al, JACS (2008) 130, 14721
  • Structure-dependent Reactivity of SWCNTs with benzenediazonium salts, C. Doyle et al, JACS 130, 6795 (2008)
  • Self-Assembling Peptide Coatings Designed for Highly Luminescent Suspension of SWCNT, D.A. Tsyboulski et al, JACS (2008) 130, 17134
  • Selective photochemical functionalization of surfactant-dispersed SWCNT in water,N.T. Alvarez et al, JACS (2008) 130, 14227
  • Efficient photosensitized energy transfer and near-IR fluorescence from porphyrin–SWNT complexes, J. Casey et al, J. Materials Chem. (2008) 18, 1510
  • Preferred Functionalization of Metallic and Small-diameter SWCNTs via reductive alkylation, D. Wunderlich et al, J. Materials Chem. (2008) 18, 1493
  • Preferred Functionalization of Metallic and Small-diameter SWCNTs by Nucleophilic Addition of Organolithium and Magnesium Compounds Followed by Reoxidation, D. Wunderlich et al, Eur. J. Chem. (2008) 14, 1607
  • Stable Luminescence from Individual Carbon Nanotubes in Acidic, Basic, and Biological Environments, J. Duque et al, JACS (2008) 130, 2626
  • Antenna chemistry with metallic SWCNT, J. Duque et al, JACS (2008) 130, 15340
  • Spectroscopic Studies of Carbon Nanotubes, R. Zhang, M.S. Thesis, Ohio University (2008)
 
2007 and earlier
  • Temperature and pH-responsive SWCNT Dispersions, D. Wang and L. Chen, Nano Lett (2007) 7, 1480
  • Interfacial Trapping of SWCNT Bundles, R.K. Wang et al, JACS (2007) 129, 15124
  • Fluorescence Quenching of SWCNT in SDBS Surfactant Suspension by Metal Ions: Quenching Efficiency as a Function of Metal and Nanotube Identity, J. J. Brege et al, J. Phys. Chem. (2007) 111, 17812
  • SWCNT PEG-eggs: SWCNTs in Biocompatible Shell-crosslinked Micelles, R. Wang et al, Carbon (2007) 45, 2388
  • Structure-dependent Fluorescence Efficiencies of Individual SWCNTs, D.A. Tsyboulski et al, Nano Lett (2007) 7, 3080
  • Peptides that Non-covalently Functionalize SWCNTs to give controlled solubility characteristics, L.S. Witus et al, J. Materials Chem. (2007) 17, 1909
  • Templated Synthesis of SWCNT and Metal Nanoparticle Assemblies in Solution, D. Wang et al, JACS (2006) 128, 15078
  • Dielectrophoresis Field Flow Fractionation of SWCNT, H. Peng et al, JACS (2006) 128, 8397
  • Functionalization of SWCNT "On Water", B. K. Price and J. M. Tour, JACS (2006) 128, 12899
  • Mammalian Pharmacokinetics of Carbon Nanotubes Using Intrinsic Near-infrared Fluorescence, P. Cherukuri et al, PNAS (2006) 103, 18882
  • Developing Implantable Optical Biosensors, K.J. Ziegler, Trends in Biotechnol (2005) 23, 440
 

Disclaimer: These links are for informational use only. By providing links to other sites, Applied NanoFluorescence, LLC  does not guarantee or endorse the information or products available on these sites.

3701 Kirby Dr, Ste 994  •  Houston, TX 77098  •  713-521-1450  •  info@appliednano.com