Relevant Literature (click on each recent title for full article or journal link)
- Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, M. O'Connell et al., Science (2002) 297, 593
- Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes, S. M. Bachilo et al., Science (2002) 298, 2361
- Dependence of Optical Transition Energies on Structure for SWCNT in Aqueous Suspension: An Empirical Katuaura Plot, R. B. Weisman and S. M. Bachilo, Nano Lett. (2003) 3, 1235
- Down the Tubes We Glow, D. Bradley, Spectroscopy now (2004)
- Simplifying Carbon Nanotube Identification, R. B. Weisman, The Industrial Physicist (2004) 24
- Versatile Visualization of Individual SWCNT with near-IR Fluorescence Microscopy, D. A. Tsyboulski et al, Nano Letters (2005) 5, 975
- Carbon Nanotubes, R. B. Weisman and S. Subramoney, The Electrochemical Society's Interface (2006) 15, 42
- SWCNTs in the Intact Organism: Near-IR Imaging and Biocompatibility Studies in Drosophila, T.K. Leeuw et al, Nano Lett (2007) 7, 2650
- Optical Spectroscopy of SWCNT, R. B. Weisman (2008)
- Fluorimetric Characterization of SWCNT, R. B. Weisman, Analytical & Bioanalytical Chemistry (2010) 396, 1015
- Efficient Spectrofluorometric Analysis of SWCNT Samples, J. R. Rocha et al, Analytical Chemistry (2011) 83, 7431
Publications using the NanoSpectralyzer
- Kinetics of Single-Wall Carbon Nanotube Coating Displacement by Single-Stranded DNA Depends on Nanotube Structure. K. Lei, S. Bachilo, and R. B. Weisman. ACS Nano (2023) 17(17), 17568–17575.
- Structure-Resolved Monitoring of Single-Wall Carbon Nanotube Functionalization from Raman Intermediate Frequency Modes. N. Soltani, et al. J. Phys. Chem. Lett. (2023) 14(35), 7960–7966.
- Unveiling the Energy Transfer Mechanism between Aqueous Colloidal NIR-II Quantum Dots and Water. H. Yang, et al. J. Chem. Phys. (2023), 159, 014709.
- Carbon Nanotubes for Optical Detection of Quarternary Ammonium Compounds in Complex Media. H. Dewey, et al. ACS Appl. Nano Mater. (2023), 6(17), 15530–15539.
- Optical Nanosensor Passivation Enables Highly Sensitive Detection of the Inflammatory Cytokine IL-6. P. Gaikwad, et al. Preprint/Under Review (2023).
- Immunogenic Treatment of Metastatic Breast Cancer using Targeted Carbon Nanotube Mediated Photothermal Therapy in Combination with Anti-PD-1. G. N. F. Faria, et al. Preprint/Under Review (2023).
- Spatio-Temporally Deciphering Nerve Regeneration in vivo after Extracellular Vesicle Therapy under NIR-II Fluorescence Imaging. Y. Wang, et al. Nanoscale (2023), 15, 7991-8005.
- Open-Shell Diradical-Sensitized Electron Transport Layer for High-Performance Colloidal Quantum Dot Solar Cells. S. Fang, et al. Adv. Mat. (2023), 2212184, https://doi.org/10.1002/adma.202212184.
- Isolation of (6,5) Single-Walled Carbon Nanotube Enantiomers by Surfactant-Assisted Aqueous Two-Phase Extraction. H. Li, et al. Carbon (2023) 204, 475-483.
- Seeking and Identifying Time Window of Antibiotic Treatment Under in vivo Guidance of PbS QDs Clustered Microspheres Based NIR-II Fluorescence Imaging. S. Feng, et al. Chem. Eng. Journal. (2023) 451 (1) 138584.
- Glycopolymer-Wrapped Carbon Nanotubes Show Distinct Interaction of Carbohydrates with Lectins. A. M. DilLillo, et al. Front. Chem. (2022), 10, https://doi.org/10.3389/fchem.2022.852988.
- Visualizing Synaptic Dopamine Efflux with a 2D Composite Nanofilm. C. Bulumulla, et al. Neuroscience. (2022), eLife 11:e78773, https://doi.org/10.7554/eLife.78773.
- Optimization of ssDNA-SWCNT Ultracentrifugation via Efficacy Measurements. Z. Cohen, S. Parveen, and R. Williams. ECS J. Solid State Technology (2022), 11(10), 101009.
- Optical Detection of pH Changes in Artificial Sweat Using Near-Infrared Fluorescent Nanomaterials. N. Sultana, et al. Sens. Diagn. (2022), 1, 1189-1197.
- Novel Diketopyrrolopyrrole NIR-II Fluorophores and DDR Inhibitors for in vivo Chemo-photodynamic Therapy of Osteosarcoma. X. Cheng, et al. Chem. Eng. J. (2022), 446 (2), 136929.
- Compositional Analysis of ssDNA-Coated Single-Wall Carbon Nanotubes through UV Absorption Spectroscopy. A. Alizadehmojarad, et al. Nano. Lett. (2022), DOI 10.1021/acs.nanolett.2c02850.
- DNA-guided Lattice Remodeling of Carbon Nanotubes. Z. Lin, et al. Science. (2022) 377, 6605, p. 535-539.
- Near-infrared Photoluminescence of Portland Cement. W. Meng, et al. Scientific Reports. (2022) 12, 1197.
- Surfactant Chemistry and Polymer Choice Affect Single-Wall Carbon Nanotube Extraction Conditions in Aqueous Two-Phase Extraction. C. Sims and J. Fagan. Carbon (2022) 191, 215-226.
- Matrix Manipulation of Directly-Synthesized PbS Quantum Dot Inks Enabled by Coordination Engineering. F. Li, et al. Advanced Functional Materials (2021) 3, 45, 2104457. DOI 10.1002/adfm.202104457.
- Real-Time In Vivo Detection and Monitoring of Bacterial Infection Based on NIR-II Imaging. S. Feng, et al. Frontiers in Chemistry (2021) 9, 689017, 1-9.
- Surface Coating- and Light-Controlled Oxygen Doping of Carbon Nanotubes. F. Xhyliu and G. Ao. J. Phys. Chem. C. (2021), 125, 17, 9236-9243.
- Simple, Cost-Efficient and High Throughput Method for Separating Single-Wall Carbon Nanotubes with Modified Cotton. T. Khamidullin, et al. Carbon (2021), 178, 157-163.
- Targeted Single-Walled Carbon Nanotubes for Photothermal Therapy Combined with Immune Checkpoint Inhibition for the Treatment of Metastatic Breast Cancer. P. McKernan, et al. Nanoscale Research Letters (2021) 16, 9.
- Facile Synthesis of Melanin-Dye Nanoagent for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal Therapy. J. Sun, et al. International Journal of Nanomedicine (2020) 15, 10199-10213.
- Analysis of Single-Walled Carbon Nanotubes in Estuarine Sediments by Density Gradient Ultracentrifugation Coupled to Near-Infrared Fluorescence Spectroscopy Reveals Disassociation of Residual Metal Catalyst Nanoparticles. M. Montano, et al. Environ. Sci. Technol. (2020) DOI 10.1021/acs.est.0c06058.
- A Targeted Activatable NIR-IIb Nanoprobe for Highly Sensitive Detection of Ischemic Stroke in a Photothrombotic Stroke Model. X. Yang, et al. Adv. Healthcare Mater. (2020) DOI 10.1002/adhm.202001544.
- Dye Quenching of Carbon Nanotube Fluorescence Reveals Structure-Selective Coating Coverage. Y. Zheng, et al. ACS Nano (2020) 14, 9, 12148-12158.
- Carbohydrate- and Chain Length-Controlled Complexation of Carbon Nanotubes by Glycopolymers. M. Cantwell, et al. Langmuir (2020) 36, 33, 9878-9885.
- Tracking the in vivo Spatio-Temporal Patterns of Neovascularization via NIR-II Fluorescence Imaging. M. Chen, et al. Nano Res. (2020) 13, 3123-3129.
- Chirality-Pure Carbon Nanotubes Show Distinct Complexation with Recognition DNA Sequences. F. Xhyliu & G. Ao. Carbon (2020) 167, 601-608.
- Novel Ultrasmall Multifunctional Nanodots for Dual-Modal MR/NIR-II Imaging-Guided Photothermal Therapy. F. Li, et al. Biomaterials (2020) 256, 120219.
- Surfactant-Stripped J-aggregates of azaBODIPY Derivatives: All-in-one Phototheranostics in the Second Near Infrared Window. Y. Zhang, et al. J. Con. Rel. (2020) 326, 256-264.
- Near-Infrared Fluorescence as a Method for Determining Single-walled Carbon Nanotube Extraction Conditions in Aqueous Two Polymer Phase Extraction. C. Sims & J. Fagan. Carbon (2020) 165, 196-203.
- A Cascade Targeted and Activatable NIR-II Nanoprobe for Highly Sensitive Detection of Acute Myeloid Leukemia in an Orthotopic Model. X. Yang, et al. CCS Chem. (2020) 2, 895-903.
- Pathway-Dependent Structures of DNA-Wrapped Carbon Nanotubes: Direct Sonication vs Surfactant/DNA Exchange. Y. Yang, et al. Phys. Chem. C (2020) 124, 16, 9045-9055.
- Controlled Synthesis of Ag2Te@Ag2S Core-Shell Quantum Dots with Enhanced and Tunable Fluorescence in the Second Near-infrared Window. Y. Zhang, et al. Small (2020) 15, 14, 202001003.
- Photoexcited Aromatic Reactants Give Multicolor Carbon Nanotube Fluorescence from Quantum Defects. Y. Zheng, et al. ACS Nano (2020) 14, 1, 715-723.
- From Newspapers Substrate to Nanotubes - Analysis of Carbonized Soot Grown on Kaolin Sized Newsprint. Y. Zheng, et al. C - J. of Carbon Research (2019) 5, 66.
- Synchro-Excited Free-Running Single Photon Counting: A Novel Method for Measuring Short-Wave Infrared Emission Kinetics. C.W. Lin, et al. Anal. Chem. (2019) DOI 10.1021/acs.analchem.9b03207.
- Rational Design of a Multifunctional Molecular Dye with Single Dose and Laser for Efficiency NIR-II Fluorescence/Photoacoustic Imaging Guided Photothermal Therapy. R. Zhang, et al. Anal. Chem. (2019) DOI 10.1021/acs.analchem.9b03152.
- Multi-Drug/Gene NASH Therapy Delivery and Selective Hyperspectral NIR Imaging Using Chirality-Sorted Single-Walled Carbon Nanotubes. Md.T. Hasan, et al. Cancers (2019) 11, 1175.
- A Nano-Cocktail of an NIR-II Emissive Fluorophore and Organoplatinum(II) Metallacycle for Efficient Cancer Imaging and Therapy. F. Ding, et al. Chem. Sci. (2019) 10, 7023.
- Fe3+ - Codoped Ultra-Small NaGdF4:Nd3+ Nanophosphors: Enhanced Near-Infrared Luminescence, Reduced Particle Size and Bioimaging Applications. Y. Li, et al. RSC Adv. (2019) 9, 18070.
- Radio Frequency Heating of Metallic and Semiconducting Single-Walled Carbon Nanotubes. M. Anas, et al. NanoScale (2019) 11, 9617-9625.
- Utilization of Near Infrared Fluorescence Imaging to Track and Quantify the Pulmonary Retention of Single-Walled Carbon Nanotubes in Mice. J. Nicholas, et al. NanoImpact (2019) 14,100167.
- Novel Dual-Function Near-Infrared II Fluorescence and PET Probe for Tumor Delineation and Image-Guided Surgery. Y. Sun, et al. Chem. Sci. (2018) 9, 2092.
- Variance Spectroscopy Studies of Single-Walled Carbon Nanotube Aggregation. S. Sanchez, et al. J. Phys. Chem. C (2018) 122, 45, 26251-26259.
- Fluorescence Enhancement from Single Gold Nanostars: Towards Ultra-Bright Emission in the First and Second Near-Infrared Biological Windows. I. Theodorou, et al. NanoScale (2018) 10, 15854-15864.
- NIR-II Fluorescence Imaging using Indocyanine Green Nanoparticles. R. Bhavane, et al. Scientific Reports (2018) 8, 14455.
- Near-Infrared II Dye-Protein Complex for Biomedical Imaging and Imaging-Guided Photothermal Therapy. X. Zeng,et al., Adv. Healthcare Mater. (2018) 7, 1800589.
- Enantiomers of Single-Wall Carbon Nanotubes Show Distinct Coating Displacement Kinetics. Y. Zheng, et al. J. Phys. Chem. Lett. (2018) 9, 3793-3797.
- Indexing the Quality of Single-Walled Carbon Nanotube Dispersions Using Absorption Spectra. Y. Zheng, et al. J. Phys. Chem. C (2018) 122, 4681-4690.
-
In Vivo Optical Detection and Spectral Triangulation of Carbon Nanotubes. C. Lin, et al. ACS Appl. Mater. Interfaces (2017) 9, 48, 41680-41690.
-
Phosphatidylserine Targeted Single-Walled Carbon Nanotubes for Photothermal Ablation of Bladder Cancer. N. Virani, et al. Nanotechnology (2017) 29, 035101.
-
Indocyanine Green Fluorescence in Second Near-Infrared (NIR-II) Window. Z. Starosolski, et al. PLOS ONE (2017), 12(11), 1-14
-
Trajectory of the Selective Dissolution of Charged Single-Walled Carbon Nanotubes. D. Buckley, et al. J. Phys. Chem. C (2017) 121 (39), 21703–21712
-
Single Ultrasmall Mn2+ -doped NaNdF4 Nanocrystals as Multimodal Nanoprobes for Magnetic Resonance and Second Near-Infrared Fluorescence Imaging. X. Wang, et al. Nano Research (2017),11(2), 1069–1081.
-
Synthesis, Characterization, and Activity of a Triazine Bridged Antioxidant Small Molecule. P. Gonzalez, et al. ACS Chem. Neurosci. (2017), 8 (11), pp 2414–2423
-
Gold Nanostar Substrates for Metal Enhanced Fluorescence through the First and Second Near-Infrared Windows. I. Theodorou, et al. Chem. Mater. (2017), 29(16), 6916-6926
-
Novel Bright-Emission Small-Molecule NIR-II Fluorophores for In Vivo Tumor Imaging and Image-Guided Surgery. Y. Sun, et al. Chem. Sci. (2017),8, 3489-3493
-
Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities. Y. Zheng, et al. J. Phys. Chem. Lett. (2017) 8(9), 1952-1955
-
Strongly Bound Sodium Dodecyl Sulfate Surrounding Single-Walled Carbon Nanotubes. J. Xu, et al. Langmuir, (2017) 33(20), 5006-5014
-
Neodymium-Doped NaHoF4 Nanoparticles as Near-Infrared Luminescent/T2-Weighted MR Dual-Modal Imaging Agents In Vivo. Y. Feng, et al. J. Mater. Chem. B (2017) 5, 504--510
-
Assessing Inhomogeneity in Sorted Samples of Single-Walled Carbon Nanotubes through Fluorescence and Variance Spectroscopy. Y. Kadria-Vili, et al. ECS Journal of Solid State Science and Technology (2017) 6 (6), M3097-M3102
-
Enhanced Nanodrug Delivery to Solid Tumors Based on a Tumor Vasculature-Targeted Strategy. C. Song, et al. Adv. Funct. Mater. (2016) 26(23), 4192-4200
-
A Novel Photoacoustic Nanoprobe of ICG@PEG-AG2S for Atherosclerosis Targeting and Imaging In Vivo. C. Wu, et al. Nanoscale (2016) 8, 12531-12539
-
Fundamental Role of Oxygen Stoichiometry in Controlling the Band Gap and Reactivity of Cupric Oxide Nanosheets. Z. Fishman, et al. J. Am. Chem. Soc. (2016) 138(34), 10978-10985
-
Real-Time and Long-Time In Vivo Imaging in the Shortwave Infrared Window of Perforator Vessels for more Precise Evaluation of Flap Perfusion. S. Feng, et al. Biomaterials (2016) 103, 256-264
-
(n,m)-Specific Absorption Cross Sections of Single-Walled Carbon Nanotubes Measured by Variance Spectroscopy. S.Sanchez, et al. Nano Lett. (2016) 16 (11), 6903–6909
-
Carbon Nanotubes Dispersed in Aqueous Solution by Ruthenium(II) Polypyridyl Complexes. K. Huang, et al. Nanoscale (2016) 8, 13488-13497
-
Facile Synthesis of β-Lactoglobulin Capped Ag2S Quantum Dots for In Vivo Imaging in the Second Near-Infrared Biological Window. J. Chen, et al. Journal of Material Chemistry B. (2016) 4, 6271-6278
- Highly Fluorescent Ribonuclease-A-Encapsulated Lead Sulfide Quantum Dots for Ultrasensitive Fluorescence in Vivo Imaging in the Second Near-Infrared Window. Y. Kong, et al, Chemistry of Materials. (2016) 28(9), 3041−3050
- Teslaphoresis of Carbon Nanotubes. L. Bornhoeft, et al, ACS Nano. (2016) 10(4), 4873−4881
- Selective Desorption of High-Purity (6,5) SWCNTs from Hydrogels through Surfactant Modulation. Y. Zhao et al. Chem. Commun., (2016) 52, 2928-2931
- Facile synthesis of ultra-small PbSe nanorods for photovoltaic application. L. Han, et al. Nanoscale (2015) 7, 2461-2470
- Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. F. Hu, et al. Nano Res. (2015) 8, 1637
- Preoperative Detection and Intraoperative Visualization of Brain Tumors for More Precise Surgery: A New Dual-Modality MRI and NIR Nanoprobe. C. Li, et al. Small (2015) 11, 4517–4525
- Examination of Single-Walled Carbon Nanotubes Uptake and Toxicity from Dietary Exposure: Tracking Movement and Impacts in the Gastrointestinal System. J. Bisesi, et al. Nanomaterials (2015) 5(2), 1066-1086
- Resonance Raman Optical Activity Spectra of Single-Walled Carbon Nanotube Enantiomers. M. Magg et al, J. Phys. Chem. Lett. (2015) 7(2), 221-225
- Variance Spectroscopy. J. Streit, et al, J. Phys. Chem. Lett. (2015) 6, 3976−3981
- Structure-Dependent Thermal Defunctionalization of Single-Walled Carbon Nanotubes. S. Ghosh et al, ACS Nano (2015) 7, 7428-7435
- Anti-tumor Response Induced by Immunologically Modified Carbon Nanotubes and Laser Irradiation using Rat Mammary Tumor Model. J. Acquaviva et al. Proc. SPIE9324, Biophotonics and Immune Responses X, (2015) 932415
- Unique Toxicological Behavior from Single-Walled Carbon Nanotubes Separated via Selective Adsorption on Hydrogels. J. Clar et al. Environ. Sci. Technol., (2015) 49 (6), 3913–3921
- Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors. D. Pham et al. ACS Nano, (2015), 9 (2), 2018–2027
- High Precision Fractionator for use with Density Gradient Ultracentrifugation. Y. Kadria-Vili et al, Anal. Chem. (2014) 86 (22), pp 11018–11023
- Optical absorption spectroscopy and properties of single walled carbon nanotubes at high temperature. A. Roch et al, Synthetic Metals. (2014) 197, 182-187
- Selective Assembly of DNA-Conjugated Single-Walled Carbon Nanotubes from the Vascular Secretome. X. Gong et al. ACS Nano, (2014), 8 (9), 9126–9136
- Biocompatible Carbon Nanotube–Chitosan Scaffold Matching the Electrical Conductivity of the Heart. S. Pok et al. ACS Nano, (2014) 8 (10), 9822–9832
- The Effect of DNA-Dispersed Single-Walled Carbon Nanotubes on the Polymerase Chain Reaction. R. Williams et al. PLoS ONE (2014) 9 (4), e94117
- Evaluation of Critical Parameters in the Separation of Single-Wall Carbon Nanotubes through Selective Adsorption onto Hydrogels. J. Clar et al. J. Phys. Chem. C, (2014), 118 (28), 15495–15505
- Removing Aggregates from Single-Walled Carbon Nanotube Samples by Magnetic Purification. S. Ghosh et al, J. Phys. Chem. (2014) 118 (8), 4489-4494
- Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography. D. Tsyboulski et al, J. Biophotonics (2014) 7, 581-588
- Near-infrared fluorescent single walled carbon nanotube-chitosan composite: Interfacial strain transfer efficiency assessment. M. Menamparambath et al, Applied Physics Letters (2013) 102, 171903
- Functionalization of porous agarose film with single-walled carbon nanotubes as excellent electrochemical interface materials. R. Li et al, Polymer Composites (2013) 34, 482-486
- Transparent Stretchable Single-Walled Carbon Nanotube-Polymer Composite Films with Near-Infrared Fluorescence. R. Ma et al, Advanced Materials (2013) 25, 2548-2553
- Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain. A. Parks et al, Environ. Toxicol. Chem. (2013) 32, 1270-1277
- Chirality Affects Aggregation Kinetics of Single-Walled Carbon Nanotubes. I. Khan et al, Environ. Sci. Technol. (2013) 47, 1844-1852
- Electrochemical Processing of Discrete Single-Walled Carbon Nanotube Anions. S. Hodge et al, ACS Nano (2013) 7, 1769-1778
- Length-dependent optical properties of single-walled carbon nanotube samples. A. Naumov et al, Chemical Physics (2013) DOI: 10.1016/j.chemphys.2012.12.033
- Carbon nanotube bundling: influence on layer-by-layer assembly and antimicrobial activity. S. Aslan et al, Soft Matter (2013) 9, 2136-2144
- Chromatic Aberration Short-Wave Infrared Spectroscopy: Nanoparticle Spectra without a Spectrometer. J. Streit et al, Analytical Chemistry (2013) 85, 1337-1341
- Tuning the adsorption of perylene-based surfactants on the surface of single-walled carbon nanotubes. C. Backes et al, Phys. Status Solidi B (2013) 250, 2592-2598
- Mapping Charge Transport by Electroluminescence in Chirality-Selected Carbon Nanotube Networks. F. Jakubka et al, ACS Nano (2013) 7, 7428-7435
- Characterization and Quantitative Analysis of Single-Walled Carbon Nanotubes in the Aquatic Environment Using Near-Infrared Fluorescence Spectroscopy. A. Schierz et al, Environ. Sci. Technol. (2012) 46, 12262-12271 (featured on the cover of issue 22!)
- Three-Dimensional Gold Nanoparticle Clusters with Tunable Cores Templated by a Viral Protein Scaffold. F. Li et al, Small (2012)
- Solution Phase Photolysis of 1,2-Dithiane Alone and with Single-Walled Carbon Nanotubes. P. Engel et al, J. Phys. Chem. A (2012) 116, 8345-8351
- Lipophilic guanosine derivatives as carbon nanotube dispersing agents. A. D. Crescenzo et al, Carbon (2012) 50, 4663-4672
- Temperature-Responsive Polymer/Carbon Nanotube Hybrids: Smart Conductive Nanocomposite Films for Modulating the Bioelectrocatalysis of NADH. X. Zhao et al, Chem. Eur. J. (2012) 18, 3687-3694
- SWCNT/SiRNA Complexes and Methods Related Thereto. L. D. Kirkpatrick & M. K. Weiss (2012)
- A Mechanistic Study of the Selective Retention of SDS-suspended SWCNTs on Agarose Gels. C. A. Silver-Batista et al, J. Phys. Chem. C (2011) 115, 9361-9369
- Oxidized SWCNTs: Removal of Carbonaceous Functionalized Material by Washing with Solvents or Base. E. D. Canto et al, MRS Proceedings (2011) DOI: 10.1557/opl.2011.1085
- Sorting the Unique Chirality, Right Handed SWCNTs via the Dye Modified ssDNA. R. Liu et al, J. Nanoscience & Nanotechnology (2011) 11, 7587-7592
- Analyzing Absorption Backgrounds in SWCNT Spectra. A. V. Naumov et al, ACS Nano (2011) 5, 1639-1648
- Screeing the Cytotoxicity of SWCNTs Using Novel 3D Tissue-mimetic Models. D. Movia et al, ACS Nano (2011) 5, 9278-9290
- Effect of surfactant structure on carbon nanotube sidewall adsorption. A. Di Crescenzo et al, European J. Org. Chem. (2011) DOI: 10.1002/ejoc.201100720
- Controlled Carboxylic Acid Introduction: A Route to Highly Purified Oxidised SWCNT. K. Flavin et al, J. Mat. Sci. (2011) DOI: 10.1039/C1JM12217G
- Photoluminescence from Inner Walls in Double Walled CNTs: Some Do, Some Do Not. S. Yang et al, Nano Letters (2011) DOI:10.1021/nl2025745
- Using Fluorescence Quenching of SWCNT with Metal Ions as a Probe of Surfactant:SWNT Interactions. J. Brege and A.R. Barron, Main Group Chemistry (2011) 2, 89-104
- Growth of SWCNT with Controlled Diameters and Lengths by an Aerosol Method. Y. Tian et al, Carbon (2011) 49, 4636-4643
- Structural Modifications of Ionic Liquid Surfactants for Improving the Water Disepersibility of Carbon Nanotubes: An Experimental and Theoretical Study.A. Di Crescenzo et al, Physical Chemistry Chemical Physics (2011) 13, 11373-11383
- Carbon Nanotube Sidewall Functionalization with Carbonyl Compounds - Modified Birch Conditions vs the Organometallic Reduction Approach. B. Gebhardt et al, JACS (2011)133, 7985-7995
- Mitigation of the Impact of SWCNT on a Freshwater Green Algae: Pseudokirchneriella subcapitata. S. Youn et al, NanoToxicology (2011) DOI: 10.3109/17435390.2011.562329
-
Swelling the Hydrophobic Core of the Surfactant-Suspended SWCNT: A SANS Study. C. Silvera-Batista and K.J. Ziegler, Langmuir (2011) DOI: 10.1021/la202117p
- SWCNT Shell Decorating Porous Silicate Materials: A General Platform for Studying the Interaction of Carbon Nanotubes with Photoactive Molecules. A. Saha et al, Chem Sci. (2011) 2, 1682-1687
- Non-covalent Ruthenium Polypyridyl Complexes-Carbon Nanotubes Composites: an Alternative for Functional Dissolution of Carbon Nanotubes in Solution. D. Jain et al, Chem. Commun. (2011) 47, 2246-2248
- Magnetic Nanoparticle-based Separation of Metallic and Semiconducting Carbon Nanotubes, H. Kim et al, Nanotechnology (2011) 22, 45703-45708
- Synthesis and Characterization of Boron Azadipyrromethane SWCNT Electron Donor-Acceptor Conjugates, K. Flavin et al, ACS Nano (2011) 5, 1198-1206
- Density Gradient Ultracentrifugation on Carbon Nanotubes According to Structural Integrity as a Foundation for an Absolute Purity Evaluation. C. Backes et al, ChemPhysChem (2011) 12, 2576-2580
- Perylene-Based Nanotweezers: Enrichment of Larger-Diameter Single-Walled Carbon Nanotubes. C. Backes et al, Chem. Asian J. (2011) 6, 438-444
- Counterion effect on the aggregation of anionic perylene dyes and the influence on carbon nanotube dispersion efficiencies. C. Backes et al, J. Mater. Chem. (2011) 21, 3554-3557
- Oxygen Doping Modifies Near-Infrared Band Gaps in Fluorescent SWCNTs, S. Ghosh et al, Science (2010) 300, 1656-1659
- A Novel Diameter-selective Functionalization of SWCNTs with Lithium Alkynylides, B. Gebhardt et al, Eur. J. Org. Chem. (2010) 8, 1494
- Diameter-dependent Solubility of SWCNTs, J. G. Duque et al, ACS Nano (2010) 4, 3063
- Solvatochromic shifts of SWCNT in nonpolar microenvironments, C. A. Silvera-Batista et al, Phys. Chem. Chem. Phys. (2010) 12, 6990
- Understanding the Electrophoretic Separation of SWCNT Assisted by Thionine as a Probe, H. Li et al, J. Phys. Chem. (2010) DOI: 10.1021/jp106869r
- Advanced Sorting of SWCNTs by Nonlinear Density-gradient Ultracentrifugation, S. Ghosh, S.M. Bachilo & R. B. Weisman, Nature Nanotechnology (2010) 5, 443
- Effect of Vaporization Temperature on the Diameter & Chiral Angle Distributions of SWCNTs, P. Nikolaev et al, J. Nanoscience & Nanotechnology (2010) 10, 3780
- Dispersion of HiPco® and CoMoCAT® Single-Walled Nanotubes (SWNTs) by Water Soluble Pyrene Derivatives—Depletion of Small Diameter SWNTs. C. Backes et al, Chem. Eur. J. (2010) 16, 3314-3317
- Enhanced Adsorption Affinity of Anionic Perylene-Based Surfactants towards Smaller-Diameter SWCNTs. C. Backes et al, Chem. Eur. J. (2010) 16, 13185-13192
- Nanotube Surfactant Design: The Versatility of Water-Soluble Perylene Bisimides. C. Backes et al, Adv. Mater. (2010) 22, 788-802
- High Population of Individualized SWCNTs through the Adsorption of Water-Soluble Perylenes,C. Backes et al, JACS (2009) 131, 2172
- Coating Individual SWCNT with Nylon 6,10 through Emulsion Polymerization,W. C. Chen et al, Applied Materials & Interfaces (2009) 1, 1821
- Environmentally Friendly Functionalization of SWCNT in molten urea,C. D. Doyle and J. M. Tour, Carbon (2009) 47, 3215
- Solution Manipulation of SWCNT and Their Applications in Electrochemistry, D. Wang, Ph.D. Thesis, Ohio University (2009)
- Diameter Tuning of SWCNT with Reaction Temperature Using a Co Monometallic Catalyst, N. Li, J. Phys. Chem. C (2009) 113, 10070
- Effect of Chromium Addition to the Co-MCM-41 Catalyst in the Synthesis of SWCNT, C. Z. Loebick et al, Applied Catalysis A: General (2009) 368, 40
- Long-Term Improvements to Photoluminescence and Dispersion Stability by Flowing SDS-SWNT Suspensions through Microfluidic Channels, C. A. Silvera-Batista et al, JACS (2009) 131, 12721
- Do Inner Shells of Double-Walled Carbon Nanotubes Fluoresce? D.A. Tsyboulski et al, Nano Lett (2009) 9, 3282
- In Vivo Therapeutic Silencing of Hypoxia-Inducible Factor 1 Alpha (HIF-1 ) Using Single-Walled Carbon Nanotubes Noncovalently Coated with siRNA, G. Bartholomeusz et al, Nano Research (2009) 2, 279
- Multidomain Peptides as SWCNT Surfactants in Cell Culture, E.L. Bakota et al, Biomacromolecules (2009) 10, 2201
- Strategy for High Concentration Nanodispersion of SWCNT with Diameter Selectivity, C. Biswas et al, J. Phys. Chem. C (2009) 113, 10044
- Selective Enhancement of Carbon Nanotube Photoluminescence by Resonant Energy Transfer, Ahmad et al, Chem. Phys. Chem. (2009) 10, 905
- Fluorescence Quenching of SWCNTs with Transition-Metal Ions, J. Brege et al, J. Phys. Chem. C (2009) 113, 4270
- Investigation of Optimal Parameters for Oxide-Assisted Growth of Vertically Aligned SWCNTs, C. Pint et al, J. Phys. Chem. C (2009) 113, 4125
- Swelling the Micelle Core Surrounding SWCNTs with Water-immiscible Organic Solvents, R. Wang et al, JACS (2008) 130, 16330
- Improving the Effectiveness of Interfacial Trapping in Removing SWCNT Bundles, R.K. Wang et al, JACS (2008) 130, 14721
- Structure-dependent Reactivity of SWCNTs with benzenediazonium salts, C. Doyle et al, JACS 130, 6795 (2008)
- Self-Assembling Peptide Coatings Designed for Highly Luminescent Suspension of SWCNT, D.A. Tsyboulski et al, JACS (2008) 130, 17134
- Selective photochemical functionalization of surfactant-dispersed SWCNT in water,N.T. Alvarez et al, JACS (2008) 130, 14227
- Efficient photosensitized energy transfer and near-IR fluorescence from porphyrin–SWNT complexes, J. Casey et al, J. Materials Chem. (2008) 18, 1510
- Preferred Functionalization of Metallic and Small-diameter SWCNTs via reductive alkylation, D. Wunderlich et al, J. Materials Chem. (2008) 18, 1493
- Preferred Functionalization of Metallic and Small-diameter SWCNTs by Nucleophilic Addition of Organolithium and Magnesium Compounds Followed by Reoxidation, D. Wunderlich et al, Eur. J. Chem. (2008) 14, 1607
- Stable Luminescence from Individual Carbon Nanotubes in Acidic, Basic, and Biological Environments, J. Duque et al, JACS (2008) 130, 2626
- Antenna chemistry with metallic SWCNT, J. Duque et al, JACS (2008) 130, 15340
- Spectroscopic Studies of Carbon Nanotubes, R. Zhang, M.S. Thesis, Ohio University (2008)
- Temperature and pH-responsive SWCNT Dispersions, D. Wang and L. Chen, Nano Lett (2007) 7, 1480
- Interfacial Trapping of SWCNT Bundles, R.K. Wang et al, JACS (2007) 129, 15124
- Fluorescence Quenching of SWCNT in SDBS Surfactant Suspension by Metal Ions: Quenching Efficiency as a Function of Metal and Nanotube Identity, J. J. Brege et al, J. Phys. Chem. (2007) 111, 17812
- SWCNT PEG-eggs: SWCNTs in Biocompatible Shell-crosslinked Micelles, R. Wang et al, Carbon (2007) 45, 2388
- Structure-dependent Fluorescence Efficiencies of Individual SWCNTs, D.A. Tsyboulski et al, Nano Lett (2007) 7, 3080
- Peptides that Non-covalently Functionalize SWCNTs to give controlled solubility characteristics, L.S. Witus et al, J. Materials Chem. (2007) 17, 1909
- Templated Synthesis of SWCNT and Metal Nanoparticle Assemblies in Solution, D. Wang et al, JACS (2006) 128, 15078
- Dielectrophoresis Field Flow Fractionation of SWCNT, H. Peng et al, JACS (2006) 128, 8397
- Functionalization of SWCNT "On Water", B. K. Price and J. M. Tour, JACS (2006) 128, 12899
- Mammalian Pharmacokinetics of Carbon Nanotubes Using Intrinsic Near-infrared Fluorescence, P. Cherukuri et al, PNAS (2006) 103, 18882
- Developing Implantable Optical Biosensors, K.J. Ziegler, Trends in Biotechnol (2005) 23, 440